Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Ecology and trophic role of Oncholaimus dyvae sp. nov. (Nematoda: Oncholaimidae) from the lucky strike hydrothermal vent field (Mid-Atlantic Ridge)
Autores:  Zeppilli, Daniela
Bellec, Laure
Cambon-bonavita, Marie-anne
Decraemer, Wilfrida
Fontaneto, Diego
Fuchs, Sandra
Gayet, Nicolas
Mandon, Perrine
Michel, Loic
Portail, Marie
Smol, Nic
Sørensen, Martin V.
Vanreusel, Ann
Sarrazin, Jozee
Data:  2019-07
Ano:  2019
Palavras-chave:  Oncholaimus dyvae sp. nov.
Hydrothermal vents
Deep sea
Carbon and nitrogen isotopic ratios
Resumo:  Background Nematodes are an important component of deep-sea hydrothermal vent communities, but only few nematode species are able to cope to the harsh conditions of the most active vent sites. The genus Oncholaimus is known to tolerate extreme geothermal conditions and high sulphide concentrations in shallow water hydrothermal vents, but it was only occasionally reported in deep-sea vents. In this study, we performed morphological, genetic and ecological investigations (including feeding strategies) on an abundant species of Oncholaimus recently discovered at Lucky strike vent field on the Mid-Atlantic Ridge at 1700 m water depth. Results We described this species as Oncholaimus dyvae sp. nov.. This new species differs from all other members of the genus by the combination of the following characters: body length (up to 9 mm), the presence of a long spicule (79 μm) with a distally pointed end, a complex pericloacal setal ornamentation with one precloacal papilla surrounded by short spines, and a body cuticule with very fine striation shortly posterior to the amphid opening. Overall, O. dyvae sp. nov. abundance increased with increasing temperature and vent emissions. Carbon isotopic ratios suggest that this species could consume both thiotroph and methanotrophic producers. Furthermore sulfur-oxidizing bacteria related to Epsilonproteobacteria and Gammaproteobacteria were detected in the cuticle, in the digestive cavity and in the intestine of O. dyvae sp. nov. suggesting a potential symbiotic association. Conclusions This study improves our understanding of vent biology and ecology, revealing a new nematode species able to adapt and be very abundant in active vent areas due to their association with chemosynthetic micro-organisms. Faced by the rapid increase of anthropogenic pressure to access mineral resources in the deep sea, hydrothermal vents are particularly susceptible to be impacted by exploitation of seafloor massive sulfide deposits. It is necessary to document and understand vent species able to flourish in these peculiar ecosystems.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00508/61985/66097.pdf

DOI:10.1186/s40850-019-0044-y

https://archimer.ifremer.fr/doc/00508/61985/
Editor:  Springer Science and Business Media LLC
Formato:  application/pdf
Fonte:  Bmc Zoology (2056-3132) (Springer Science and Business Media LLC), 2019-07 , Vol. 4 , N. 1 , P. 6 (15p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional